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We analyze the band structure of a silicon nanotube with sp3 bonds and variable bond lengths. This nanotube
has many similarities with a carbon nanotube including a band gap at half-filling and conducting behavior
which is dependent on structure. We derive a simple formula which predicts when the nanotube is metallic. We
discuss our results in the context of a nanotube subject to small applied strains as this provides a means of
distorting bond lengths in a predictable way and may be tested experimentally. The effects of strain on
nanotube conductance have important implications for sensor technology.
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There exists a wide variety of nanotubes which can be
constructed from inorganic materials such as silicon,1 boron
nitride,2–5 and tungsten disulfide.6 While the vast majority of
nanotube research concentrates on carbon nanotubes �CNTs�,
there is some evidence that inorganic nanotubes may be bet-
ter suited to certain tasks. For example, silicon nanotubes
�SNTs� may be preferable to CNT as hydrogen storage
devices7 and boron nitride nanotubes have several potential
applications in electronics because, unlike CNT, the band
gap is not structure dependent and may be tuned to a desired
width using an electric field.8 In this Brief Report we look at
the conducting properties of a SNT derived from simple ana-
lytic band-structure calculations. Numerical studies have in-
dicated that SNTs are possibly metallic11 and in most cases
our calculations agree with this conclusion. In some cases,
however, an energy gap is formed and this may lead to semi-
conducting behavior.

Typically, a CNT forms sp2 bonds which result in a hex-
agonal lattice structure. In SNT sp2 bonds are possible but
sp3 bonds are energetically favorable and so a square or at
least quadrilateral lattice is more likely than a hexagonal
lattice.9–15 Therefore, we consider a SNT constructed from
rolling up a two-dimensional quadrilateral lattice. The quad-
rilateral lattice allows for some interesting band-gap behav-
ior which is not dissimilar to what is observed in hexagonal
CNT lattices. We find that in the general case the dispersion
is gapped at zero energy, except at eight points, while a CNT
has six gapless points. In the special case of a parallelogram
lattice the band gap vanishes and the dispersion is continu-
ous.

We assume that each quadrilateral in the two-dimensional
lattice is identical, although possibly rotated, as shown in
Fig. 1. The nearest-neighbor bonds are described by four
vectors �1,2,3,4 with the constraint �4=�1−�2+�3. We de-
note the hopping strength across �l by tl. Clearly this lattice
is very similar to an irregular hexagonal lattice which may
describe a CNT but with an additional bond along �4, and
therefore we will use notation which is commonly used for
CNT. The quadrilateral lattice can be described by two iden-
tical irregular triangular sublattices offset by �1 and with
lattice vectors c1=�1−�2 and c2=�1−�3. When rolling up
the two-dimensional lattice to form a nanotube, we define the
x axis as being around the circumference C and the y axis as
the longitudinal direction. We define a vector C=nc1+mc2

= �n+m��1−n�2−m�3 with integer n ,m�0 for which the x
component defines the circumference C= �n+m�a1−na2
−ma3 and the y component is constrained by �n+m�b1
−nb2−mb3=0, where �l= �al ,bl�.

We will first discuss the special case of a SNT constructed
from a parallelogram lattice. We calculate the dispersion re-
lation and find that this nanotube is most likely metallic.
Although this case is rather simple we present it for com-
pleteness as it is distinctly different from the general case of
a quadrilateral lattice. On deriving the dispersion for the gen-
eral case we find that a gap opens up about zero energy. In
most cases the Fermi energy will lie outside this gap and the
SNT will be metallic. If the SNT is doped to half-filling, i.e.,
one electron per lattice site, the resultant particle-hole sym-
metry ensures that the Fermi energy is at zero and so must lie
within the gap. In this case the SNT behaves much like an
undoped �half-filled� CNT with conducting behavior directly
related to its lattice structure. The irregular lattice structure
of a SNT can either form naturally or be due to some applied
strain. As an applied strain will distort the lattice in a pre-
dictable manner and because it can be experimentally veri-
fied, we discuss the effect of a small external strain on the
conductance of a SNT which is doped to half-filling. We
assume that the strain is either longitudinal or torsional and
that it is applied evenly across the lattice so that the lattice
continues to comprise equal quadrilaterals. We also assume
that the strain is not large enough to cause buckling. We find
that distorting the SNT can cause it to oscillate through sev-
eral metal-insulator transitions, though the energy gaps of the
semiconducting phases may be very small.

If the quadrilaterals in Fig. 1 are parallelograms then each
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FIG. 1. �Color online� An irregular quadrilateral lattice with the
two sublattices represented by circles and squares.
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lattice site is identical and we do not have two distinct sub-
lattices. Because of this the general quadrilateral case does
not reduce to the parallelogram case and we must consider
them separately. For parallelograms only two vectors �1,2
are required as �1=−�3 and �3=−�4. If we define c1=�1
−�2 and c2=�1−�3=2�1, in analogy with the general case,
then the vector C must be modified C=nc1+mc2 /2= �n
+m��1−n�2 so that the circumference of the rolled-up lat-
tice is C= �n+m�a1−na2 and �n+m�b1−nb2=0 for integer
n ,m�0. Following the terminology in Ref. 16, there are two
special cases for nanotubes constructed from parallelogram
lattices: the prismatic case is n=0 for which only one lattice
vector �1 is required to define the circumference and the
antiprismatic case is m=0 for which both lattice vectors con-
tribute equally to the circumference. All other cases can be
defined as chiral.

As a first approximation we consider an interactionless
Hubbard Hamiltonian

H = − �
l=1

2

�
xy

tl�c†�x,y�c�x + al,y + bl� + H.c.� , �1�

where �x ,y� represents every lattice site and H.c. is the Her-
mitian conjugate. The operators c�r� and c†�r� are annihila-
tion and creation operators, respectively, at the site r= �x ,y�.
On rewriting the operators in terms of their momentum-
space Fourier transform,

H = − �
kxky

�2t1 cos�k · �1� + 2t2 cos�k · �2��c†�k�c�k�

= �
kxky

��k�c†�k�c�k� , �2�

where the momentum is k= �kx ,ky� and ��k� is the dispersion
in momentum space.

When rolling up the two-dimensional lattice the x compo-
nent of the momentum must be quantized by kx=2�p /C for
integer p. Let us say the Fermi energy is �F with correspond-
ing Fermi momentum kF= �kxF ,kyF�. In a completely clean
SNT there will be no free electrons and the Fermi momen-
tum will lie below the dispersion ��k� so the lattice will be
semiconducting. A small amount of doping17 will introduce
free carriers into the lattice, shifting the Fermi momentum,
and because the dispersion is continuous in both dimensions
it should be possible to find a Fermi momentum kF for a
given Fermi energy �F for which ��kF�=�F and kxF
=2�p /C, i.e., the system is gapless and therefore metallic.

In the general quadrilateral case the two-dimensional lat-
tice comprises two sublattices and the dispersion relation is
distinctly different from the simple parallelogram lattice
case. The interactionless Hubbard Hamiltonian is

H = − �
l=1

4

�
xy

tl�c2
†�x,y�c1�x + al,y + bl� + H.c.� , �3�

where the subscript of cj defines the sublattice. In Fig. 1 j
=1 is represented by circles and j=2 is represented by
squares. On writing the operators in momentum space,

H = − �
l=1

4

�
kx,ky

�Al�k�c2
†�k�c1�k� + Al

��k�c1
†�k�c2�k�� �4�

with Al�k�= tle
−ik·�l. The dispersion relation is �= � ��lAl�,

��k� = � ���
l

tl cos k · �l	2
+ ��

l

tl sin k · �l	2
. �5�

This dispersion, unlike the parallelogam lattice dispersion, is
not continuous over its full range as a gap has opened up
about �=0.

Like the two-dimensional hexagonal lattice of an unrolled
CNT, the energy gap does not appear across the entire �=0
range and there are several points k0= � �kx0 ,ky0� where the
dispersion on the quadrilateral lattice can be zero ��k0�=0.
In the hexagonal lattice there are six such points, but in the
quadrilateral lattice we find eight. After some algebra it can
be shown that

kx0 =
�b1 − b4��C12 − 2q12�� � �b1 − b2��C14 − 2q14��

�b1 − b2��a1 − a4� − �b1 − b4��a1 − a2�
,

ky0 = −
�a1 − a4��C12 − 2q12�� � �a1 − a2��C14 − 2q14��

�b1 − b2��a1 − a4� − �b1 − b4��a1 − a2�
,

�6�

with q12,q14=0 ,1 and

C12 = cos−1� t1
2 + t2

2 − t3
2 − t4

2

2�t3t4 − t1t2�
	 ,

C14 = cos−1� t1
2 + t4

2 − t2
2 − t3

2

2�t2t3 − t1t4�
	 . �7�

The solution in Eq. �6� takes the upper sign when �t3t4
− t1t2��t2t3− t1t4��0 and the lower sign in the opposite case.
For either of these solutions to exist, we require that C12 and
C14 are both real. In a hexagonal lattice the six zeros k0 are
known as Dirac points because the dispersion can be written
as ��k0+k�=v�k� for small k and constant v. In general the
zeros of the quadrilateral lattice are not Dirac points.

On rolling up the quadrilateral lattice to form a nanotube
kx becomes quantized, kx=2�p /C for integer p. When �F is
far from the energy gap the SNT will generally be metallic
�if free carriers are available� as it is always possible to find
kF which satisfies both ��kF�=�F and the quantization re-
quirement. The situation is much more interesting if the SNT
is doped18–21 to half-filling so that �F=0. Now the SNT will
only be metallic if kx0=2�p /C for integer p. On solving this
condition for p while making use of the constraints �n
+m�b1−nb2−mb3=0 and �4=�1−�2+�3 we find that when

p = ��n + m�C12 � mC14�/2� �8�

is an integer the SNT is metallic if C12 and C14 are both real.
The � sign follows the same rule as the � sign in Eq. �6�.
With Eq. �8� we have shown that the conducting properties
of a half-filled SNT are only dependent on the hopping
strengths and the �n ,m� structure, which is also the case in a
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CNT. One situation where a SNT is always metallic is when
n=0 �prismatic� and t2= t4, as this ensures C12=C14 with the
lower sign and p=0.

Provided the curvature is not large tl��l
−2. Large curva-

ture ruins this simple relationship through hybridization ef-
fects. So, assuming the nanotube circumference is not small
we can write Eq. �8� solely in terms of the bond lengths. In
most circumstances the bond lengths of a SNT will be dif-
ferent, but this difference will be very slight. One way in
which to enhance these differences is to subject the SNT to a
small applied strain.

The application of strain presents an ideal way in which to
compare theory with experiment as one can distort the bonds
of the nanotube in a predictable way and a wide range of
different lattice structures can be obtained. However, if we
begin with an unstrained parallelogram lattice and subject it
to longitudinal and torsional strains we will distort the lattice
but it will remain a parallelogram with a gapless dispersion
and no changes in electronic properties will be observed.
Therefore, we illustrate how strain may effect the electronic
properties of a SNT by using the simplest nonparallelogram
lattice, a prismatic n=0 SNT, which is constructed from a
trapezoidal lattice, as shown in Fig. 2 with �1=��1−	a ,0�,
�2=��−	a ,1+	b�, �3=��−1−	a ,0�, and �4=��−	a ,−1
−	b� for some constant length �. The dimensionless con-
stants 	a and 	b define the distortion in the lattice prior to
any external strain. This initial lattice is such that �2=�4 so
t2= t4 and, as discussed previously, this SNT must be metal-
lic. If we apply a small strain along the longitudinal axis the
y components of �2,4 will increase at the same rate �but in
the opposite direction� and �1,3 will remain constant. In this
scenario we still have t2= t4 so the SNT remains metallic,
provided C12 and C14 continue to be real.

If torsional strain is applied to the SNT the changes in
�1,2,3,4 can be represented by the dimensionless variables 	x
and 	y. After the application of torsional strain �2=��−	a
−	x ,1+	b+	y� and �4=��−	a+	x ,−1−	b−	y� while �1,4
remain constant. We can relate 	x and 	y to measurable pa-
rameters such as the change in length of the nanotube and the
torsional angle 
 which defines the rotation of one end of the
tube relative to the other end. In general the length is L
= �nqn+mqm��b2−b3� / �n+m� for integers qm ,qn�1, so the
change in length can be written as �L=L0	y / �1+	b�, where
L0 is the initial length of the tube. Similarly, one can find the
torsion angle, 
= �2�L0 /C�	x / �1+	b�.

Figure 3 is a contour plot of integer p and shows that the
application of torsion on a SNT at half-filling may cause it to
oscillate through several metal-insulator transitions. Similar
behavior has been observed in CNT.22 The values of 	a�0
and 	b do not have a significant effect on the shape of the
contours of integer p as can be seen by comparing Fig. 3�a�

with Fig. 3�b� which are essentially the same but shifted
relative to one another. When 	a=0 the situation is different
as the lattice reduces to a square, and so this half-filled SNT
is always metallic.
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FIG. 2. �Color online� A prismatic trapezoidal lattice.
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FIG. 3. The shaded area is where p is real and the lines are
where p is an integer, i.e., where the SNT is metallic for the trap-
ezoidal SNT with n=0, m=12 and �a� 	a=0.0001, �b� 	a=0.2.
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FIG. 4. The energy gap for the trapezoidal SNT with n=0, m
=12, 	b=−0.25, 	y=0, and �a� 	a=0.0001, �b� 	a=0.2. The energy
gap is measured in units of the proportionality constant g which is
defined by tl=g /�l

2.
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In Fig. 4 we plot the energy gap for the two SNTs con-
sidered in Fig. 3. For 	a=0.0001 the contour plot in Fig. 3�a�
clearly shows several metal-insulator transitions, but Fig.
4�a� shows that the energy gap is very small and will possi-
bly not be distinguishable from the metallic 	a=0 case. As
	a increases the energy gaps of the insulator phases tend to
increase. Therefore, to experimentally distinguish the insula-
tor phases from the metallic we would require that the bond
lengths prior to the application of strain are significantly dif-
ferent. If this is possible we may be able to tune the band gap
through the application of torsional strain. This ability to
control electronic properties through mechanical means may

find applications in several technologies, such as sensors and
transistors.

In summary, we have studied the band structure of a quad-
rilateral lattice in order to determine whether or not a SNT is
always metallic. In the majority of cases, provided there are
free electrons in the lattice, the SNT is metallic. However,
when an element of disorder is introduced through variable
bond lengths a gap opens up about zero and not unlike the
energy gap observed in CNT. This energy gap is dependent
on the SNT structure.
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